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Context: Betaine is formed from the essential nutrient choline or is
supplied from the diet. It serves as a substrate in the betaine-homo-
cysteine methyltransferase reaction and thereby provides methyl
groups for the homocysteine-methionine cycle, which is regulated by
enzymes dependent on folate, vitamin B12, riboflavin (vitamin B2), or
vitamin B6.

Objective: We investigated how betaine affected total homocysteine
(tHcy) concentration within the frame of variable B-vitamin status
and according to the methylenetetrahydrofolate reductase (MTHFR)
677C-�T genotype.

Design/Setting/Patients: This is a population-based study with a
cross-sectional design. It includes 10,601 healthy men and women
aged 50–64 yr.

Outcome Measures: Plasma samples were analyzed for tHcy, be-
taine, choline, dimethylglycine, riboflavin, and vitamin B6, whereas
folate and vitamin B12 were analyzed in serum.

Results: Betaine was a strong determinant of plasma tHcy in subjects
with low serum folate and the MTHFR TT genotype. The association was
further strengthened at low levels in the circulation of the other B-
vitamins (B2, B6, and B12). Thus, in subjects with the combination of
serum folate in the lowest quartile, low vitamin B2, B6, and B12 status,
and the MTHFR TT genotype, the difference in tHcy (mean, 95% con-
fidence interval) across extreme plasma betaine quartiles was 8.8 (1.3–
16.2) �mol/liter.

Conclusion: Betaine may thus be an important one-carbon source,
particularly in MTHFR 677 TT subjects with inadequate B-vitamin
status. (J Clin Endocrinol Metab 92: 1535–1541, 2007)

HOMOCYSTEINE (Hcy) is a sulfhydryl amino acid,
which is generated from methionine in transmethyl-

ation reactions. The plasma concentration of reduced and
oxidized forms of Hcy, collectively termed total Hcy (tHcy),
is affected by lifestyle and nutritional factors (1). Moderately
elevated levels of tHcy are related to an increased risk of
cardiovascular disease, impaired cognition, and other con-
ditions (2, 3). Severe hyperhomocysteinemia is found in pa-
tients with homocystinuria, who have a high risk of occlusive
vascular disease (4).

Betaine, at doses up to 9 g/d, has for years been used as
a tHcy-lowering agent in patients with homocystinuria (4).
It also reduces fasting tHcy (5–10) and reduces the increase
in tHcy induced by high doses of methionine, i.e. postme-
thionine load (PML) tHcy in healthy subjects (7, 8). We re-
cently demonstrated that plasma betaine is a strong predictor

of PML tHcy (11). Betaine was a weaker predictor of fasting
tHcy, but the association was strengthened under conditions
of low serum folate (11), suggesting that betaine is an alter-
native source of one-carbon units in folate-depleted subjects
(12). Betaine provides one-carbon units by serving as a sub-
strate for betaine-Hcy methyltransferase (BHMT), which cat-
alyzes the remethylation of Hcy to methionine in the liver
and kidney (13).

In most studies of healthy subjects, folate status is a more
powerful predictor of plasma tHcy than vitamin B12, but
overt B12 deficiency is associated with severe hyperhomo-
cysteinemia (1). Vitamin B6 has minor (14) or no (15) effect
on fasting tHcy, but may exert an effect on PML tHcy (16).
Recent studies have added riboflavin (vitamin B2) to the
spectrum of B-vitamins affecting the tHcy concentration (17).
The relationship between B-vitamins and plasma concentra-
tion of tHcy is probably explained by their roles as substrates
or cofactors for enzymes involved in Hcy remethylation or
transsulfuration (18). Methylenetetrahydrofolate reductase
(MTHFR) catalyzes the formation of 5-methyltetrahydrofo-
late (5-MTHF), which is the prevailing folate form in plasma
(19) and the form involved in the conversion of Hcy to me-
thionine (20). The homozygous TT genotype of the common
MTHFR 677 C-�T polymorphism, which has a prevalence of
approximately 10% in most Caucasian populations (21), is
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associated with impaired catalytic properties of the enzyme
(22, 23), and is an important genetic determinant of plasma
tHcy, particularly under conditions of low folate (24) or
riboflavin (17) status.

Plasma tHcy is a responsive indicator of B-vitamin and
MTHFR status. This is explained by metabolic reactions de-
pendent on folate, vitamin B12, riboflavin, or vitamin B6,
which converge on Hcy. In this study we used plasma tHcy
as a probe to investigate how betaine affects one-carbon
metabolism within the frame of variable B-vitamin status.
We investigated a large population of 10,601 subjects. The
study had sufficient statistical power to obtain novel data on
the influence of betaine on one-carbon metabolism, with
emphasis on the effect modification by B-vitamin status and
the MTHFR 677 C-�T polymorphism.

Subjects and Methods
Subjects and protocol

A total of 10,601 samples from subjects enrolled in the Norwegian
Colorectal Cancer Prevention (NORCCAP) study were analyzed.
NORCCAP is a prospective randomized study investigating sigmoid-
oscopy combined with fecal occult blood testing as screening modalities
for colorectal cancer in a middle aged (range, 50–64 yr) population of
both genders (25). Inclusion in the study took place from 1999–2001 at
three hospitals in the city of Oslo and in Telemark County in southern
Norway. A number of lifestyle variables were recorded, and blood
samples were collected (26). The study was approved by the Regional
Ethics Committee, and The Data Inspectorate approved the study pro-
tocol. Written informed consent was obtained from all participants.

Blood collection and biochemical analysis

At inclusion, blood samples were collected into EDTA Vacutainer
tubes and tubes without additive. Serum was allowed to clot for 1 h at
room temperature, whereas EDTA samples were immediately put on
ice. Samples were centrifuged at 1100 � g for 10 min; serum and plasma
were then separated and frozen at �20 C and stored at �80 C until
analysis. Folate (27) and vitamin B12 (28) were determined in serum, and
tHcy (29), vitamin B6 (30), riboflavin (the nonphosphorylated form) (30),
choline, betaine, and dimethylglycine (DMG) (31) were determined in
plasma by published methods. Vitamin B6 exists in three main forms in
plasma, i.e. pyridoxal 5�-phosphate (PLP), pyridoxal, and pyridoxic acid.
PLP is the cofactor form and is measured in the present study (30). The
vitamins and metabolites were analyzed in different matrices (serum vs.
EDTA plasma) because EDTA interferes with the folate assay (by in-
hibiting the growth of Lactobacillus casei) and decreases the preanalytical
variability for some metabolites, particularly for choline. MTHFR 677
C-�T genotyping was performed by using real-time PCR with 5V ex-
onuclease (Taqman) probes (32).

Statistics

Summary measures include medians with 5th to 95th percentiles.
Partial Spearman rank coefficients, adjusted for age, sex, and study
center, were used to evaluate associations between variables. The rela-
tionship between betaine and tHcy was studied according to folate levels
and MTHFR 677 genotype by a Gaussian generalized additive regres-
sion model (GAM) (33), as implemented in R (34). The relationships
between plasma tHcy and various predictors were also assessed in
multiple linear regression models, which were adjusted for age, sex,
creatinine, study center, betaine, folate, riboflavin, vitamin B6, vitamin
B12, and MTHFR 677 C-�T genotype. The vitamin levels were catego-
rized into quartiles for the whole study population. Biochemical vari-
ables were represented in the regression models as indicator variables
denoting membership to a quartile. The regression coefficient thus es-
timated the difference in mean tHcy between a reference quartile and the
other quartiles. The upper quartile was chosen as reference quartile for
betaine, folate, riboflavin, vitamin B6, and vitamin B12, whereas the
lower quartile was chosen as the reference for creatinine. Mean tHcy
levels across categories for each factor were tested for linear trend. We
estimated the strength of the betaine-tHcy relationship in separate
groups according to levels of folate (high quartile, Q4; intermediate, Q2
� Q3; low, Q1), MTHFR 677 C-�T genotype, and vitamin B2–6-12 status
(high, intermediate, or low). Vitamin B2–6-12 status was based on a
vitamin B2–6-12 index score. This index was calculated as the sum of
quartile scores (0–3) for riboflavin, vitamin B12, and vitamin B6. An
index of 0–2 was designated low, 3–5 was intermediate, and 6–9 was
high vitamin B2–6-12 status. In linear regression analyses with tHcy as
the dependent variable, test for trends in the metabolite regression
coefficients across the MTHFR 677 C-�T genotype (three levels) or folate
status (three levels) or the combined B2-B6-B12 status variable (three
levels) were obtained from appropriate product terms in the regression
model with main effects retained in the model. In these models, we used
a linear categorized representation (equally spaced integer scores) of the
metabolites. For example, a test for trend in the betaine coefficients
across MTHFR genotypes was obtained from the product term in a
model with betaine (linear; four levels) � MTHFR (linear; three levels)
� betaine*MTHFR � adjustment variables.

SPSS (SPSS Inc., Chicago, IL.) version 11.0 was used for all analyses
except the GAM regression analyses, for which we used the statistical
package R (34).

Results
Characteristics of the study population

Plasma and serum samples from 10,601 healthy subjects
(age range, 50–64 yr; 50.8% female) were analyzed. Sex and
age distributions were similar within the CC (51.4%), CT
(40.6%), and TT (8.0%) MTHFR genotypes. Men had higher
levels of tHcy, betaine, choline, DMG, and creatinine, but
lower levels of vitamin B12, folate, and riboflavin than
women (P � 0.001, data not shown). Subjects with the TT

TABLE 1. Study population characteristics by MTHFR 677 C-�T genotypea

All
(n � 10,601)

CC
(n � 5,452)

CT
(n � 4,299)

TT
(n � 850) P for trend

tHcy (�mol/liter) 10.2 (6.8–16.4) 9.9 (6.7–15.3) 10.4 (6.8–16.4) 11.2 (7.0–27.0) �0.001
Betaine (�mol/liter) 35.4 (19.1–58.3) 35.8 (19.3–59.5) 35.3 (19.2–57.6) 32.5 (17.5–54.6) �0.001
Choline (�mol/liter) 8.6 (5.8–12.9) 8.6 (5.8–13.0) 8.6 (5.8–12.9) 8.5 (5.7–12.2) 0.09
DMG (�mol/liter) 3.7 (2.4–5.9) 3.8 (2.5–6.0) 3.7 (2.5–5.9) 3.4 (2.2–5.5) �0.001
Folate (nmol/liter) 13.7 (6.6–39.4) 14.5 (7.3–40.3) 13.4 (6.6–39.0) 10.5 (5.0–32.1) �0.001
Vitamin B12 (pmol/liter) 307 (172–536) 308 (175–542) 308 (170–532) 300 (157–516) 0.19
Vitamin B6 (nmol/liter) 48.0 (18.7–152.4) 47.9 (19.1–153.4) 49.0 (18.8–153.2) 44.4 (15.6–143.1) 0.34
Riboflavin (nmol/liter) 10.4 (4.1–55.9) 10.4 (4.1–57.6) 10.4 (4.1–54.8) 10.7 (3.9–46.5) 0.06
Creatinine (�mol/liter) 69 (51–92) 69 (50–92) 70 (51–93) 66 (50–89) 0.01
Vitamin B2–6-12 index 4.0 (1.0–8.0) 4.0 (1.0–8.0) 5.0 (1.0–8.4) 4.0 (1.0–8.0) 0.42
Age (yr) 55 (51–63) 55 (51–63) 55 (51–63) 55 (51–63) 0.11
Males (%) 49 48 50 51
a Median (5th to 95th) percentiles.
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genotype had approximately 10% lower betaine levels, 30%
lower folate levels, and 15% higher levels of tHcy, compared
with CC subjects (Table 1).

Bivariate correlations

Adjusted Spearman correlation coefficients between con-
centrations of betaine, choline, DMG, and B-vitamins are
shown in Table 2. Betaine, choline, and DMG correlated
strongly, but strong positive relations were also found be-
tween several B-vitamins, as well as between betaine and
B-vitamins.

Betaine determinants

Determinants of plasma betaine were assessed in a mul-
tiple regression model including study center, age, sex, cre-
atinine, choline, folate, riboflavin, vitamins B6 and B12, and
MTHFR 677 C-�T genotype. Plasma choline (standardized
�-coefficient � 0.37), sex (� � 0.36), and serum folate (� �
0.12) were the strongest predictors of betaine level (P � 0.001,
adjusted R2 � 0.28). Subgroup analyses showed that these
three variables were also the strongest determinants of
plasma betaine in each of the three MTHFR genotypes (data
not shown).

Determinants of plasma tHcy

The relationships between plasma tHcy and concentra-
tions of various B-vitamins and creatinine were assessed in
a multiple regression model, which also included age, sex,
and study center (Table 3). Betaine, all B-vitamins, and cre-
atinine were significant predictors of tHcy, and the associ-
ations with betaine, folate, and riboflavin in particular were

strongest in the TT group (Table 3). The estimated difference
in mean plasma tHcy between subjects in the lowest com-
pared with the highest quartile of betaine concentrations
were 3.2 �mol/liter in the TT, 1.2 �mol/liter in the CT, and
1.1 �mol/liter in the CC groups.

Dose-response relationship between betaine and tHcy

We constructed dose-response curves for the relationship
between plasma betaine and tHcy in strata defined by quar-
tiles of serum folate and by MTHFR 677 C-�T genotypes. The
curves were obtained using a Gaussian generalized additive
model (GAM) (33) and were adjusted for age, sex, creatinine,
and study center (Fig. 1). An inverse dose-response relation-
ship between betaine and tHcy was found, which was strong
in subjects with the TT genotype and folate in the lowest
quartile. A moderate negative betaine-tHcy association was
observed in subjects in the lowest folate quartile combined
with the CT or CC genotypes, whereas in subgroups with
serum folate in quartiles 2–4, the betaine-tHcy relation was
weak or essentially absent, irrespective of genotype.

The combined effect of MTHFR status, folate, and other
B-vitamins

To estimate the effect of B-vitamins other than folate, we
constructed a B2–6-12 index score, which is the sum of quar-
tile scores (0–3) for concentrations of riboflavin, vitamin B12,
and vitamin B6. A B2–6-12 index score was used to avoid
small subgroups defined by combinations with each of the
B-vitamins. In a multiple regression analyses (adjusting for
age, sex, study center, and creatinine), this index score was
a stronger predictor of plasma tHcy (� � �0.20) than quar-

TABLE 2. Partial Spearman correlation coefficientsa

Choline DMG Folate Vitamin B6 Riboflavin Vitamin B12 tHcy

Betaine 0.38c 0.31c 0.19c 0.16c 0.04c 0.07c �0.22c

Choline 0.33c 0.11c 0.08c 0.05c 0.00 �0.06c

DMG 0.04c 0.04c 0.02b 0.02b 0.02b

Folate 0.39c 0.26c 0.16c �0.44c

Vitamin B6 0.36c 0.18c �0.24c

Riboflavin 0.20c �0.18c

Vitamin B12 �0.24c

a Ajusted for age, sex, and study center.
b P � 0.05.
c P � 0.001.

TABLE 3. Relative strength of plasma tHcy determinants according to MTHFR 677 C-�T genotype

Determinant

Genotype

All (n � 10,576) CC (n � 5,439) CT (n � 4,288) TT (n � 849) Pa

�mol/liter Pb �mol/liter Pb �mol/liter Pb �mol/liter Pb

Betaine 1.46 (1.26–1.65) �0.001 1.11 (0.91–1.31) �0.001 1.17 (0.89–1.46) �0.001 3.21 (1.83–4.59) �0.001 �0.001
Folate 3.04 (2.84–3.23) �0.001 2.17 (1.96–2.37) �0.001 2.88 (2.60–3.16) �0.001 4.97 (3.58–6.36) �0.001 �0.001
Vitamin B12 1.42 (1.24–1.60) �0.001 1.14 (0.95–1.33) �0.001 1.46 (1.20–1.73) �0.001 2.78 (1.54–4.01) �0.001 �0.001
Riboflavin 0.82 (0.63–1.01) �0.001 0.50 (0.30–0.70) �0.001 0.72 (0.44–0.99) �0.001 3.92 (2.57–5.26) �0.001 �0.001
Vitamin B6 0.55 (0.33–0.76) �0.001 0.42 (0.20–0.64) �0.001 0.36 (0.05–0.68) 0.08 1.98 (0.45–3.51) 0.028 0.014
Creatinine 1.62 (1.42–1.83) �0.001 1.81 (1.60–2.03) �0.001 1.49 (1.20–1.79) �0.001 2.76 (1.29–4.23) 0.001 0.27

Data are expressed as difference in mean tHcy (95% confidence interval) between extreme quartiles of each determinant. Data are obtained
by multiple regression with tHcy as the dependent variable and all variables in the table as covariates. The model is adjusted for age, sex, and
study center.

a P for test of trend in the regression coefficient of each determinant across MTHFR 677 C-�T genotypes.
b P for trend across quartiles of vitamins and metabolites.
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tiles of each B-vitamin or summary scores of each combina-
tion of two B-vitamins (� � �0.18) (result not shown).

We estimated the simultaneous effect of MTHFR geno-
type, folate, and other B-vitamins (i.e. B2–6-12 index score)
on the betaine-tHcy relationship by multiple linear regres-
sion. The model contained these three variables and was
additionally adjusted for age, sex, creatinine, and study cen-
ter. The effect parameter was the difference in mean tHcy
between the highest and lowest betaine quartiles (Fig. 2 and
Table 4).

In subjects with both low serum folate (Q1) and low vi-
tamin B2–6-12 status, the difference in tHcy (mean, 95%
confidence interval) between those with low (Q1) vs. high-
plasma betaine (Q4) was 8.79 �mol/liter in TT subjects, com-
pared with 4.11 �mol/liter in CT and 2.40 �mol/liter in CC
subjects. In subjects with low serum folate (Q1) and high

vitamin B2–6-12 status, these tHcy differences were 4.68,
1.90, and 0.68 �mol/liter in TT, CT, and CC subjects, respec-
tively. The differences in tHcy between extreme betaine quar-
tiles in the subgroups with the combination of high folate and
TT genotype were small and not significantly different from
zero, but the estimates were imprecise due to the low subject
number (10–63) in these subgroups (Table 4).

Discussion

This is a cross-sectional study on plasma betaine as a
determinant of tHcy in a population of 10,601 subjects. We
confirmed previous observations (11, 35) that plasma betaine
is inversely related to tHcy. A novel observation is that be-
taine is a particularly strong determinant of tHcy in subjects
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with the MTHFR 677 TT genotype in combination with low
levels of folate and other B-vitamins.

Study design

The large study population allowed precise estimates of
betaine-tHcy associations in the entire population, as well as
in subgroups. For example, of the 850 subjects with the TT
genotype, 397 had low serum folate and 144 individuals
(1.4% of the study population) had both low serum folate and
low vitamin B2–6-12 status. Furthermore, age and ethnicity
can influence tHcy levels, and the homogeneity of the study
population reduces confounding from these variables.

Concentrations of tHcy, betaine, and folate

The median concentration of plasma betaine was 35.4
�mol/liter, which is in agreement with previous reports
from studies of healthy individuals (11, 31, 36). Median tHcy
was approximately 15% higher and folate was 30% lower in
subjects with the TT genotype, compared with the CC ge-
notype, as has consistently been demonstrated in other stud-
ies (24, 37). Betaine concentrations were related to MTHFR
genotype and showed a small decrease according to the
number of T alleles. This may reflect that betaine and
5-MTHF are fungible sources of methyl groups (38), and
impaired formation of 5-MTHF in subjects with the MTHFR
677 TT genotype may lead to increased betaine consumption
through the BHMT pathway.

Folate and other B-vitamins

B-vitamins, including folate, vitamin B12, riboflavin, and
vitamin B6, serve as cofactors in several pathways of one-
carbon metabolism (18). In addition, the metabolic functions
of these B-vitamins are interconnected, because some en-
zymes involved in their activation require another B-vitamin
as a cofactor (39). Such a functional network, and the fact that
intakes of different B-vitamins correlate (40), may explain the
positive relationships between the concentrations of B-vita-
mins reported in the present study (Table 2) and by others
(40). This is the background for constructing a composite

variable for the concentrations of riboflavin, vitamin B6 and
vitamin B12, i.e. the vitamin B2–6-12 index.

We observed an inverse relationship between plasma be-
taine and tHcy, which extended across the whole concen-
tration range of betaine (Fig. 1). The tHcy difference between
subjects in extreme betaine quartiles was strongest at low
serum folate and was particularly pronounced in the sub-
group with a low vitamin B2–6-12 status (Fig. 2 and Table 4).
These observations agree with the idea that Hcy is directed
to the BHMT pathway under conditions of impaired folate-
dependent remethylation (41). Impaired remethylation may
occur if methionine synthase (MS) function is inhibited di-
rectly, by insufficient dietary supply of vitamin B12 or folate,
or indirectly, by low MTHFR activity. Conceivably, high
concentrations of the cofactors (methylcobalamin for MS or
flavin adenine dinucleotide for MTHFR) may boost low en-
zyme activities caused by insufficient concentrations of sub-
strates (5-MTHF and 5,10-methylenetetrahydrofolate, re-
spectively) and vice versa. Such cooperative mechanisms
may explain the interaction between folate and other B-vi-
tamins observed in the present study.

MTHFR 677 C-�T genotype

The strong association between tHcy and betaine in subjects
with the combination of low B-vitamin status and the MTHFR
TT genotype may reflect up-regulation of the betaine-depen-
dent Hcy remethylation under conditions of impaired activity
of 5-MTHF-dependent MS. 5-MTHF formation is inhibited
when MTHFR activity is low (20), and in vitro studies on re-
combinant human MTHFR show that the variant associated
with the 677 C-�T transition has a propensity to lose its co-
factor, flavin adenine dinucleotide, particularly at low folate
(42). This might explain why riboflavin, folate, and MTHFR
genotype are cooperative determinants of the tHcy-betaine
relationship.

Conclusion

Plasma betaine is a strong determinant of plasma tHcy,
predominantly in subjects with low levels of folate and other
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status (low, intermediate, or high).
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B-vitamins and the MTHFR 677TT genotype. This observa-
tion strongly supports the idea that betaine is an important
source of one-carbon units, in particular when folate status
is compromised, whether caused by inadequate nutrition or
genetic factors. This points to the role of betaine as a one-
carbon source but also highlights the importance of betaine
measurement in studies on folate and Hcy status in relation
to chronic diseases.
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